

Long term site productivity trials – What happened to the soil resources?

Loretta Garrett, Peter Clinton, Peter Beets, Mark Kimberley, Simeon Smaill

Outline

- Soil and forest productivity
- Long-term sustainable productivity trials
- Woodhill soil results
- Summary

**Growing
confidence
in forestry's
future** Research
Programme
2013-2019

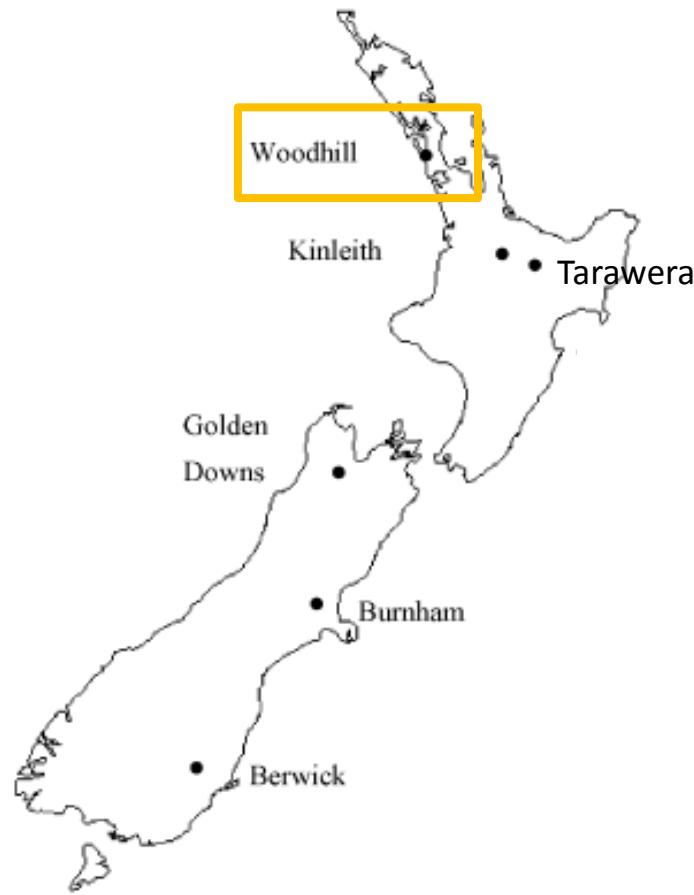
Are changes to soil productivity being hidden?

$$\text{Forest Productivity} = \text{Internal Factors} \times \text{External Factors} \times \text{Silvicultural Management}$$

Internal Factors: - genotype

External Factors: - climate
- soils

Silvicultural Management: - weed control
- irrigation


$$\text{1st Rotation Yield} = \text{Gene activity} \times \text{Site nutrition} \times \text{Weed competition}$$

Benchmarks productivity for this site

	Genetic gain	Nutrient loss	Better products
$\text{2nd Rotation Yield} = +20\% \times -20\% \times +15\%$			

Long-term sustainable productivity trials

- Organic matter removal
- Fertiliser amendment
- 6 sites, established 1986

Woodhill long-term trial

Treatments	Treatment Description
Harvest removal management	Addition of double the amount of slash
	Stem only removed
	Whole tree removed
	Whole tree + Forest Floor removed
Fertiliser management	± Fertiliser application (dominantly N)

Woodhill tree results – 2014

Age when trees achieved a mean DBH of 35 cm for unfertilised harvesting treatments

- Unfertilised FF (forest floor removed) treatment took 3 years longer to reach 35 cm DBH than other unfertilised treatments

Reduction in time required to reach a mean DBH of 35 cm achieved by fertilising for each harvesting treatment

- Fertilising reduced the age at which trees achieved 35 cm DBH by 3-5 years

Woodhill soil results – 1985 to 2014

0-10 cm

	1985	2014
Total C (%)	Very Low	
Total N (%)	Very Low	No change
Total P (mg%)	High	
Bray P (mg%)	High	

1985 = site value

2014 = Stem only removal no fertiliser

 Significant

 Not significant

Woodhill soil results – 2014

Organic matter management

Depth (cm)	Treat-ment	Bulk density (g/cm ³)	Total C (%)	Total N (%)	Total P (mg%)	Bray P (mg%)
0-10	FF	a	a	a	a	a
10-20	WT	a	b	b	a	a
20-30	SO	a	b	ab	a	a
30-40	DS	a	b	ab	a	a

10-20 cm and 20-30 cm No treatment effects

Woodhill soil results – 2014

Change with the addition of fertiliser

Depth (cm)	Bulk density (g/cm ³)	Total C (%)	Total N (%)	Total P (mg%)	Bray P (mg%)
0-10	none	↑	↑	↓	↓
10-20	none	↑	↑	none	↓
20-30	none	↑	↑	none	↓

Woodhill soil results – 2014

**Forest floor removal treatment –
Was soil C and N recovered with fertiliser**

Fertiliser amendment was unable to recover
soil carbon and soil nitrogen

Woodhill soil results – 2014

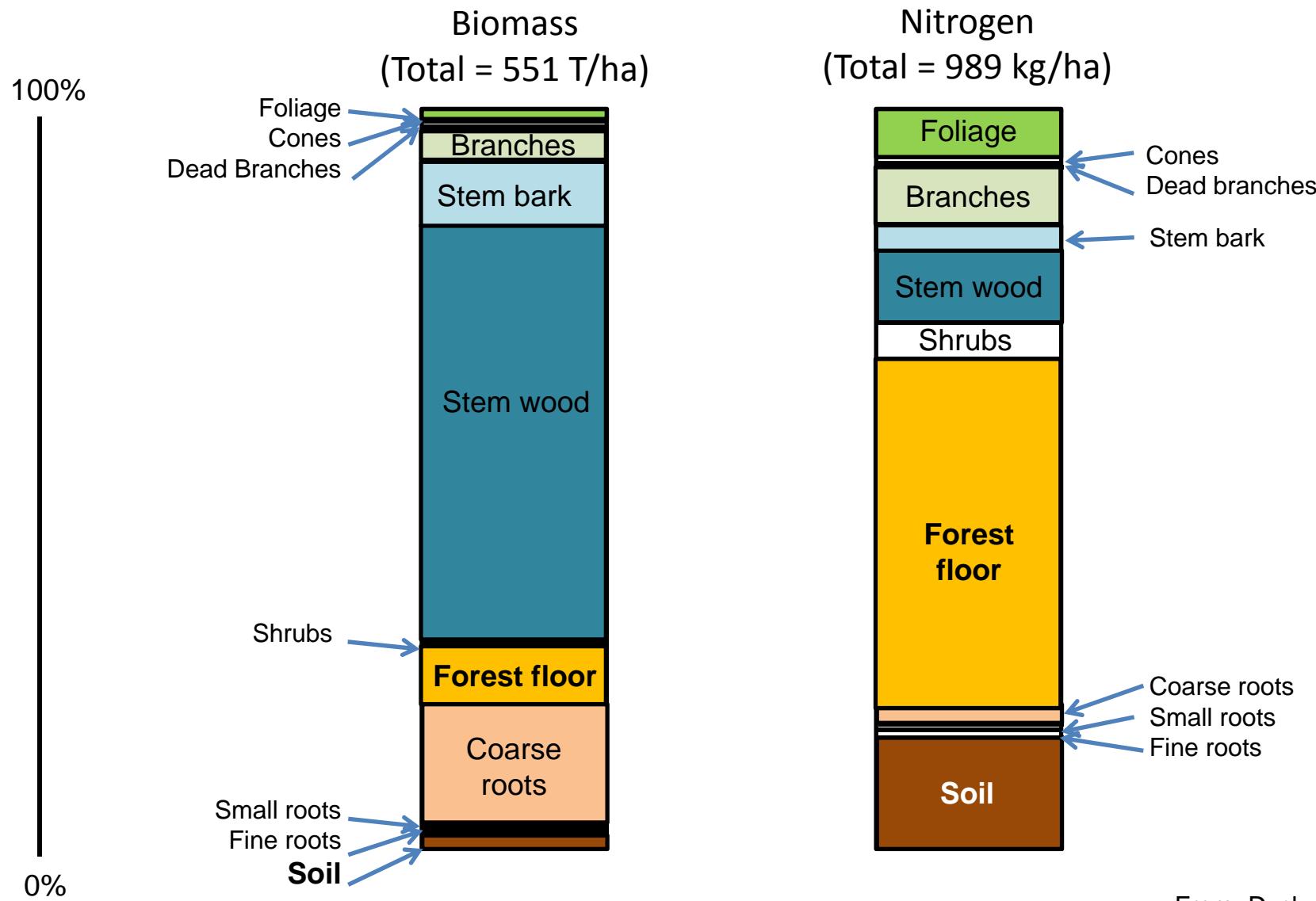
Key findings were:

- FF treatment reduced soil C and N at end of rotation
- Fertiliser addition increased soil C and N, but decreased available P to depth in the soil, Total P decreased in the top 10 cm of soil only

Forest floor analysis to come – important pool of nutrients and supply of nutrients to the soil

Woodhill soil results – 2014

Future soil nutrient implications:


- On a sandy soil like Woodhill there is benefit in forest floor and harvest residue retention to soil C and N
- The site is N deficient even with N fertiliser application, indicating another over-riding limitation to the site
- Benefit in N fertiliser application, but need to consider impact on other nutrients – e.g. greater decrease in available P

Next up for soil and Long-term trial series

- Woodhill forest floor pool contribution to site nutrients
- Tarawera long-term trial soil and forest floor has been sampled and ready for analysis
- Using the data to test and improve NuBalM – **Nutrient Balance Model**

**Growing
confidence
in forestry's
future** Research
Programme
2013-2019

Importance of the forest floor

From: Dyck et al. (1991).

Areas at risk

Areas planted with greater risk of N, P, Mg and B deficiencies in radiata pine

Soil order	Deficient nutrients	Area with current radiata pine (ha)	% of total radiata pine estate
Recent	N, P, B	247,015	13.5
Podzol	N, P	127,555	7.0
Pallic	B	126,230	6.9
Ultic	N, P, Mg	99,517	5.4
Raw	N, P	32,392	1.8
		632,700	34.6

Can forest soils supply nutrients if productivity doubled?

Current nutrient removals (kg ha⁻¹)

N	P	K	Ca	Mg	
217	36.1	258	230	72	Stem only removal
421	61.8	394	417	110	Whole tree removal

Nutrient removals when productivity doubled (kg ha⁻¹)

435	72.2	517	460	145.9	Stem only removal
842	123.7	788	835	220	Whole tree removal

Summary

- More than 50% of NZ's planted forest estate will soon be in its 3rd or 4th rotation, so this work provides a crucial insight into future productive potential
- Findings feed into a site specific nutrient balance model for improved nutrient management precision NuBalM – **Nutrient Balance Model**

Growing confidence in forestry's future
Research Programme 2013-2019

<http://research.nzfoa.org.nz/>
www.scionresearch/gcff

Loretta Garrett
loretta.garrett@scionresearch.com

25th March 2015

