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Introduction

• Site Index, 300 Index 
commonly used metrics to 
describe plantation 
productivity

• Typically estimates of these 
properties made at the 
stand level by foresters

• Estimates of these 
productivity surfaces have  
also been made using 
environmental variables



Introduction
• Little research has investigated the utility of 

remotely sensed data sources for predicting 
productivity metrics

• Use of remotely sensed data could :
 improve prediction accuracy 
 allow fine scale spatial prediction

• Combinations of the following three data sources 
could be useful :
 Environmental Surfaces
 Satellite Imagery
 LiDAR



Data sources 
- Environmental surfaces

• Data mostly at 100 m2

resolution

• Air temperature
• Solar radiation 
• Rainfall
• Relative humidity
• Slope
• Soil fertility

MW2
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MW2 Pete, Santosh, if you have any additional information or pictures please add these. 
Michael Watt, 4/03/2015



Data sources 
- satellite imagery

• RapidEye most useful satellite
 5 m resolution, 0.01-0.02 $/ha

• 5 spectral bands
• Vegetation ratios that describe 

photosynthetic activity can be 
derived. 

• Textural measures that describe 
vegetation surfaces can be derived.

• Easily incorporated into GIS 



Data sources 
- Light detection and ranging (LiDAR)
Active remote sensing technology

LiDAR emits ~ 200,000 
pulses per second
Records up to 4 returns per pulse
Each return is converted to 3D point



Site Index from LiDAR

• LiDAR can be used to 
accurately predict height

• Using stand age and a 
age-height equation we
can estimate Site Index

• Site Index predicted 
from LiDAR was used
for modelling



Objective

• Develop models of 300 Index and Site Index using 
different combinations of LiDAR, satellite imagery and 
environmental surfaces 

• Models developed with and without stand age using 
both non-parametric and parametric methods



Methods

• LiDAR acquired early 
2014 ~ 11 points m2

• RapidEye acquired 
January 2014

• Total of 493 plots 
installed early 2014

• 433 plots used for model 
fitting, 60 plots set aside 
for model validation



Methods

• Total of 14 models developed using various combinations 
of the three datasets. 

• Parametric method used was multiple regression

• Non-parametric method used was k-nearest neighbour
• Random forest or k-MSN used to assign neighbours
• Values of k were optimised to minimise model error



Results - Site Index

R
ap

id
E

ye
 (R

E
) s

pe
ct

ra
l

R
E

 ra
tio

s

R
E 

te
xt

ur
e

R
E 

sp
ec

ta
l +

 ra
tio

s 
+ 

te
xt

ur
e

En
vi

ro
nm

en
ta

l v
ar

ia
bl

es

E
nv

iro
nm

en
ta

l v
ar

ia
bl

es
 +

 R
E

Li
D

A
R

 p
re

di
ct

ed
 S

ite
 In

de
x 

(S
I)

Li
D

A
R

 P
re

d.
 S

I +
 E

nv
iro

n.
 +

 R
E

R
oo

t m
ea

n 
sq

ua
re

 e
rr

or
 (m

)

1.0

1.5

2.0

2.5

3.0

Parametric
Non-parametric k-NN

1.0

1.5

2.0

2.5

3.0

3.5

Models used to predict Site Index

R
ap

id
E

ye
 (R

E
) s

pe
ct

ra
l

R
E

 ra
tio

s

R
E 

te
xt

ur
e

R
E 

sp
ec

ta
l +

 ra
tio

s 
+ 

te
xt

ur
e

En
vi

ro
nm

en
ta

l v
ar

ia
bl

es

E
nv

iro
nm

en
ta

l v
ar

ia
bl

es
 +

 R
E

Li
D

A
R

 p
re

di
ct

ed
 S

ite
 In

de
x 

(S
I)

Li
D

A
R

 P
re

d.
 S

I +
 E

nv
iro

n.
 +

 R
E

C
oe

ffi
ci

en
t o

f d
et

er
m

in
at

io
n 

(R
2 )

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

Without age

With age



Results - 300 Index
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Results – Best Models

Metric Age? Type Variables R2 RMSE
Site Index Y NP LiDAR + Environ. + RapidEye 0.91 1.40 m

N P Environmental + RapidEye 0.79 2.46 m

300 Index Y P LiDAR 0.79 2.45 m3 ha-1 yr-1

N NP Environmental + RapidEye 0.65 3.21 m3 ha-1 yr-1



Site Index  300 Index
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Results – Top three variables

Metric Type Variables
Site Index P LiDAR derived Site Index; Av. spring air temp; NIR mean texture

NP LiDAR derived Site Index; Av. spring air temp; Av. spring solar rad.

300 Index P LiDAR derived Site Index; Av. spring air temp; NIR mean texture
NP LiDAR derived Site Index; Av. spring air temp; Av. summer VPD



Research gains
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Research gains
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R2 = 0.57
RMSE = 3.55 m3 ha-1 yr-1

R2 = 0.79
RMSE = 2.45 m3 ha-1 yr-1

R2 = 0.76
RMSE = 2.30 m

R2 = 0.91
RMSE = 1.40 m



Summary

• Models of Site Index and 300 Index created

• Significant gains in precision possible using 
information from LiDAR and RapidEye

• For models without age, best data source were 
environmental surfaces + RapidEye

• For models with age, best data source was LiDAR

• RapidEye and environmental surfaces useful cost 
effective alternative to LiDAR
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